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Abstract
The lattice Boltzmann model for the nonlinear Schrödinger equation is
proposed. The new model is based on the technique of the higher order moment
of equilibrium distribution functions and a series of lattice Boltzmann equations
in different time scales. The Euler equations are derived from the nonlinear
Schrödinger equation by removing non-physical pressure. We have simulated
two irrotational flows. These numerical results agree well with classical ones.

PACS numbers: 47.11.+j, 05.10.−a, 47.90.+a

1. Introduction

The lattice Boltzmann method (LBM) originated from a Boolean fluid model known as the
lattice gas automata (LGA) [1] for modeling fluid flows has been developed as a new alternative
method for computational fluid dynamics (CFD). During the past few years much progress
has been made that extends the LBM as a tool for simulating many complex problems, such as
multi-phase flow, suspensions flow and flow in porous media: flows which are quite difficult
to simulate by the conventional method [2–5]. On the other hand, the lattice Boltzmann model
has undergone a number of further refinements. A recent study by Yan et al showed that
the lattice Bhatnagar–Gross–Krook (LBGK) model could be used to simulate wave motion
[6], the soliton wave [7] and Lorenz attractor [8]. All of these models can be derived by
using a higher order moment method with a multi-scale technique and the famous LBGK
model. The LBGK model is one of the simple models in the LBM. It is often used to simulate
fluid flows [2].

The LBGK model starts from mesoscopic kinetic equations, i.e. the lattice Boltzmann
equation, to determine macroscopic fluid flows. The kinetic nature brings certain
advantages over conventional numerical methods, such as their algorithmic simplicity, parallel
computation, easy handling of complex boundary conditions and efficient hydrodynamics
simulations [2–5].
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Figure 1. A two-dimensional FHP lattice.

Now, we focus on the lattice Boltzmann model for the nonlinear Schrödinger equation
[9–11]. The nonlinear Schrödinger equation (NLSE) governs the complex quantity A(x, t).
It is used to describe many complex physical phenomena. The NLSE reads

∂A

∂t
= 1

2
i∇2A + iA + iB, (1)

where A, B are complex variables, i is the unit of the imaginary number. We denote A =
A1 + iA2, B = B1 + iB2, that is to say, u1 = A1, u2 = A2, b1 = B1, b2 = B2. By introducing
Kσβ as

[K] =
(

0 −1
1 0

)
≡ Kσβ,

the nonlinear Schrödinger equation can be written as

∂uσ

∂t
= 1

2
Kσβ∇2uβ + Kσβuβ + Kσβbβ, σ = 1, 2; β = 1, 2, (2)

where σ = 1 and 2 refers to the real and imaginary parts, β = 1 and 2 denotes the dimensions.
We have much interest in its lattice Boltzmann model and relations between fluid flows

and the nonlinear Schrödinger equation. The lattice Boltzmann scheme has recently begun
to receive considerable attention as an alternative numerical scheme for simulation of fluid
flows and nonlinear systems. The conventional lattice Boltzmann method, however, requires a
real one-particle distribution function. Because the nonlinear Schrödinger equation is scripted
by the complex quantity, the strategy we select to build the lattice Boltzmann scheme is
to separate the nonlinear Schrödinger equation into real and imaginary parts to obtain a
two-species reaction–diffusion system [12]. This paper consists of three parts: (1) a lattice
Boltzmann model for the nonlinear Schrödinger equation is proposed; (2) the Euler equations
are obtained from the nonlinear Schrödinger equation by eliminating the non-physical pressure
term, and (3) two numerical simulation examples are given.

In the following section, the lattice Boltzmann model is described. In section 3, we
contribute the Euler equations by adjusting the complex variable B in equation (1). In section 4,
we give a numerical example, and section 5 gives concluding remarks.

2. The lattice Boltzmann model for the nonlinear Schrödinger equation

2.1. Lattice Boltzmann equation

Let us consider a two-dimensional lattice (see figure 1) with b links that connect the center
site to b neighboring nodes. The velocity of particles moving along the link is eα , the speed
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is |eα| = c. The distribution function Fσ
α (x, t) is defined as the particles density of the

component σ at position x, time t , with velocity eα .
The macroscopic quantity uσ (x, t) is defined as follows:

uσ (x, t) =
∑

α

F σ
α (x, t). (3)

In order to obtain an available macroscopic quantity uσ (x, t), we assume that the distribution
Fσ

α (x, t) has the local equilibrium distribution function F
σ,eq
α (x, t), and∑

α

F σ,eq
α (x, t) = uσ (x, t). (4)

The lattice Boltzmann equation is expressed as

Fσ
α (x + eα, t + 1) = Fσ

α (x, t) − 1

τ

[
Fσ

α (x, t) − Fσ,eq
α (x, t)

]
+ ωσ

α (x, t), (5)

where τ is the single relaxation time factor. ωσ
α (x, t) is a non-collision term. It expresses the

change of the particle σ by the chemical reaction [8]. We assume that F
σ,eq
α (x, t) meets these

higher order moments∑
α

F σ,eq
α (x, t)eαj = 0, (6)

∑
α

F σ,eq
α (x, t)eαieαj = λKσβuβ(x, t)δij , (7)

where δij is the Kronecker delta, λ is a parameter to be determined. Based on equations (4),
(6), (7), we obtain the solution of the equilibrium distribution functions

Fσ,eq
α (x, t) = λD

bc2
Kσβuβ(x, t), α = 1, 2, . . . , b, (8)

F
σ,eq
0 (x, t) = uσ (x, t) − λD

c2
Kσβuβ(x, t), (9)

where σ = 1 and 2 refers to the real and imaginary parts, β = 1 and 2 denotes the dimensions,
D(=2) is the number of the spatial dimensions, c is the speed of particles and α is the direction
of the particle moving along.

2.2. The macroscopic equation

Using a small parameter k as the time step in numerical simulation, we take that it is equal to
the Knudsen number [6]. The lattice Boltzmann equation in physical unit is

Fσ
α (x + keα, t + k) − Fσ

α (x, t) = − 1

τ

[
Fσ

α (x, t) − Fσ,eq
α (x, t)

]
+ ωσ

α (x, t). (10)

In equation (10), we also assume that ωσ
α (x, t) is the second-order term [6] written as

ωσ
α (x, t) = k2θσ

α (x, t). (11)

The Chapman–Enskog expansion [13] is applied to Fσ
α (x, t) under the assumption that the

small Knudsen number k,

Fσ
α =

∞∑
n=0

knF σ,n
α = Fσ,0

α + kF σ,1
α + k2Fσ,2

α + · · · . (12)
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In equation (12), Fσ,0
α denotes F

σ,eq
α . We discuss changes in different time scales, introduced

as t0, t1, . . . , thus,

t0 = t, t1 = kt, t2 = k2t, t3 = k3t, . . . ,

therefore
∂

∂t
= ∂

∂t0
+ k

∂

∂t1
+ k2 ∂

∂t2
+ k3 ∂

∂t3
+ k4 ∂

∂t4
+ O(k5). (13)

Performing the Taylor expansion upon equation (10), and retaining terms up to O(k5),
we obtain a series of the lattice Boltzmann equations in different time t0, t1, t2 scales


Fσ,eq
α = − 1

τ
F σ,1

α , (14)

∂

∂t1
Fσ,eq

α +

(
1

2
− τ

)

2Fσ,eq

α = − 1

τ
F σ,2

α + θσ
α , (15)

(
τ 2 − τ +

1

6

)

3Fσ,eq

α + 2

(
1

2
− τ

)



∂

∂t1
Fσ,eq

α +
∂

∂t2
Fσ,eq

α + 
τθσ
α = − 1

τ
F σ,3

α , (16)

(
−τ 3 +

3

2
τ 2 − 7

12
τ +

1

24

)

4Fσ,eq

α + 3

(
τ 2 − τ +

1

6

)

2 ∂

∂t1
Fσ,eq

α

+ 2

(
1

2
− τ

)



∂

∂t2
Fσ,eq

α +
∂

∂t3
Fσ,eq

α +

(
1

2
− τ

)
∂2

∂t2
1

Fσ,eq
α

+
∂

∂t1
τθσ

α +

(
1

2
− τ

)

2τθσ

α = − 1

τ
F σ,4

α , (17)

where 
 ≡ ∂
∂t0

+ eα
∂
∂x

.
To derive the equations for uσ (x, t) to first order in k, we take a summation of equation (14)

with respect to α to give the first-order macroscopic equation. This equation is named as the
conversation law in the first time scale t0:

∂

∂t0
uσ (x, t) = 0. (18)

The second-order macroscopic equation is obtained by taking (14) + (15) × k and
summation over α. Thus, we have

∂uσ

∂t
= k

(
τ − 1

2

)
∂2

∂xj∂xk

(λKσβuβδjk) + k
∑

α

θσ
α + O(k2). (19)

Equation (19) is the nonlinear Schrödinger equation (2) with truncation error O(k2) when
λk

(
τ − 1

2

) = 1
2 and k

∑
α θσ

α = Kαβuβ + Kαβbβ . If we assume θσ
α is independent of α [8],

thus

θσ
α (x, t) = 1

(b + 1)k
(Kσβuβ + Kσβbβ), (20)

ωσ
α (x, t) = k

(b + 1)
(Kσβuβ + Kσβbβ). (21)

Equation (19) is the nonlinear Schrödinger equation with the second-order accuracy of
truncation error.
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2.3. The truncation error of the model

Taking (14) + (15) × k + (16) × k2 + (17) × k3 and summation over α, we have

∂uσ

∂t
= k

(
τ − 1

2

)
∂2

∂xj ∂xk

(λKσβuβδjk) + Kσβuβ + Kσβbβ + E3 + E4 + O(k4). (22)

In equation (22), E3 is the third-order error term, E4 is the fourth-order error term

E3 = 0, (23)

E4 = −k3
(
C4 − 3C2C3 + C3

2

)
λKσβ

3c2

D + 2
∇4uβ

− k3
(
3C3 + τC2 − C3

3

) bc2

(b + 1)kD
Kσβ(∇2uβ + ∇2bβ)

− k3(C2 + τ)
λ

k

(
KσβKβη + KσβKγξ

∂bβ

∂uγ

δηξ

)[
−C2∇2uη +

1

k
(uη + bη)

]
,

(24)

in which C2 = 1
2 − τ , C3 = τ 2 − τ + 1

6 , C4 = −τ 3 + 3
2τ 2 − 7

12τ + 1
24 . The detail derivation of

the error terms is given in the appendix.
In equation (24), the main term is ∇4uβ . Its coefficient is

µ4 = −k3
(
C4 − 3C2C3 + C3

2

)
λKσβ

3c2

D + 2
. (25)

The stability of the lattice Boltzmann scheme equation (5) is controlled by this coefficient
of the term ∇4uβ , whether negative or not [14]. If the lattice Boltzmann scheme is stable, µ4

has to be negative, say, C4 − 3C2C3 + C3
2 > 0. In this paper, τ = 1.51, C4 − 3C2C3 + C3

2 =
0.946 134.

3. The nonlinear Schrödinger equation for the potential flows

The nonlinear Schrödinger equation can be transformed into the Euler equations of the potential
flows by using the transformation [11]

A(x, t) = R(x, t) eiφ(x,t). (26)

Putting equation (26) into the nonlinear Schrödinger equation, and setting

iB = iξ eiφ, (27)

where ξ is a real variable, we have

∂R

∂t
eiφ + i eiφR

∂φ

∂t
= i eiφR +

1

2
i eiφ ∂2R

∂x2
j

+ (−1)

[
1

2
i

(
∂φ

∂xj

)2

eiφR + eiφ ∂φ

∂xj

∂R

∂xj

+
1

2
eiφR

∂2φ

∂x2
j

]
+ iξ eiφ. (28)

By removing eiφ from two sides of equation (28), and separating real and imaginary parts, we
have

∂R

∂t
= − ∂R

∂xj

∂φ

∂xj

− 1

2
R

∂2φ

∂x2
j

, (29)
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R
∂φ

∂t
= R +

1

2

∂2R

∂x2
j

− 1

2
R

(
∂φ

∂xj

)2

+ ξ. (30)

Multiplying equation (29) by 2R gives

∂R2

∂t
= − ∂

∂xj

(
R2 ∂φ

∂xj

)
. (31)

Multiplying equation (30) by 1
R

gives

∂φ

∂t
= 1 +

1

2R

∂2R

∂x2
j

− 1

2

(
∂φ

∂xj

)2

+
ξ

R
. (32)

Multiplying equation (32) by operator ∂
∂xk

gives

∂2φ

∂t∂xk

= − ∂φ

∂xj

∂2φ

∂xk∂xj

+
∂

∂xk

(
1

2R

∂2R

∂x2
j

+
ξ

R

)
. (33)

Equations (31), (33) can be considered as the Euler equations of the potential flows if we
define the density ρ and velocity vj as follows:

ρ(x, t) ≡ R2(x, t), (34)

vj (x, t) ≡ ∂

∂xj

φ(x, t). (35)

Equations (31), (33) become

∂ρ

∂t
= −∂ρvj

∂xj

, (36)

∂vk

∂t
= −vj

∂vk

∂xj

+
∂

∂xk

(
1

2R

∂2R

∂x2
j

+
ξ

R

)
. (37)

The non-physical pressure term contained in equation (37) is 1
ρ

∂p

∂xk
= − ∂

∂xk

(
1

2R
∂2R

∂x2
j

+ ξ

R

)
. Now,

we are to remove this term.
In the incompressible flows, for the sake of convenience, we select that ρ = const. Thus,

R = √
ρ = const. Equation (31) becomes

∇2φ = 0. (38)

In equation (37), the pressure is written as

p = −ρ

(
1

2R

∂2R

∂x2
j

+
ξ

R

)
. (39)

According to ρ(x, t) ≡ R2(x, t), the pressure becomes

p = −ρ
ξ

R
= −Rξ.

Therefore,

ξ = − p

R
, (40)

B = − p

R
eiφ. (41)

In the case R = const, equation (37) describes an incompressible flow.
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(a) (b)

Figure 2. Point vortices and their image point vortices. (a) A point vortex above the x-axis, (b) a
point in the corner of the x- and y-axes.

4. Numerical examples

In this section we apply the lattice Boltzmann model to two irrotational flows: (1) a point
vortex flow above the x-axis, (2) a point vortex in the corner of the x- and y-axes.

4.1. The point vortex above the x-axis

A point vortex of strength � at z0 = x0 + iy0, the complex potential is

w(z) = �

2π i
log(z − z0), (42)

where z = x + iy. Putting the point vortex above the x-axis, see figure 2(a), we could write
the complex potential as

w(z) = �

2π i
log

z − z0

z − z̄0
. (43)

The potential function is the real part of w(z) :

φ(x, y) = �

2π
�, (44)

ψ(x, y) = − �

2π
log η. (45)

In equations (44), (45),

� = Arc tan

(
b

a

)
, η =

√(a

c

)2
+

(
b

c

)2

.

Here a = (x − x0)
2 + (y − y0)

2, b = −2y0(x − x0), c = (x − x0)
2 + (y + y0)

2.

A point vortex follows with strength � at z0 = 1
2 + i 1

2 . Suppose first that in the absence
of the x-axis, see figure 2(a), according to the mapping theorem, we obtain the velocity
potential (44) and the stream function (45), contours of the potential function φ and the stream
function ψ are plotted in figure 3.
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(a) (b)

Figure 3. Contours of the theoretical result. (a) Potential function φ, (b) stream function ψ .
z0 = 1

2 + i 1
2 . Contours number is 40.

(a) (b)

Figure 4. Contours of the numerical result by using the lattice Boltzmann model to FHP lattice.
(a) Potential function φ, (b) stream function ψ . z0 = 1

2 + i 1
2 . Parameters are c = 3.0, τ = 1.51,

lattice size = 100 × 100, time t = 10 000
t , R = 1. Contours number is 40.

We select a region [0, 1] × [0, 1] and the x-axis is a wall. The point vortex is at the
site x0 = 1

2 , y0 = 1
2 . Figure 4 is the contours of the potential function φ and the stream

function ψ calculated by using the LBM at time t = 10 000
t in which time step is

t = 
x/c = 1.667 × 10−3. The initial condition is a point vortex flow without the
x-axis. Boundary conditions are ∂2φ

∂x2

∣∣
x=0 = 0, ∂2φ

∂x2

∣∣
x=1 = 0, ∂φ

∂y

∣∣
y=0 = 0, ∂2φ

∂y2

∣∣
y=1 = 0. In the

boundary y = 0, the normal component of velocity is zero; other three boundaries are Von
Neumann conditions. This numerical result agrees well with the classical result [15].

4.2. The point vortex in a corner

A point vortex of strength � at z0 = x0 + iy0, the complex potential is equation (42), where
z = x + iy. The point vortex is put into a corner of two walls, x- and y-axes, see figure 2(b).
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(a) (b)

Figure 5. Contours of the theoretical result. (a) Potential function φ, (b) stream function ψ .
z0 = 1

4 + i 1
4 . Contours number is 40.

According to the mapping theorem, the complex potential reads as

w(z) = �

2π i
log

z2 − z2
0

z2 − z̄2
0

. (46)

The potential function is the real part of w(z) :

φ(x, y) = �

2π
�, (47)

ψ(x, y) = − �

2π
log η. (48)

In equations (47), (48),

� = Arc tan

(
b

a

)
, η =

√
a2 + b2.

Here

a =
[
(x2 − y2) − (

x2
0 − y2

0

)]2
+ 4

(
x2y2 − x2

0y2
0

)
[
(x2 − y2) − (

x2
0 − y2

0

)]2
+ 4(xy + x0y0)2

, (49)

b = − 4x0y0
[
(x2 − y2) − (

x2
0 − y2

0

)]
[
(x2 − y2) − (

x2
0 − y2

0

)]2
+ 4(xy + x0y0)2

. (50)

These contours of the potential function φ and the stream function ψ are plotted in figure 5.
We select a region [0, 1] × [0, 1] and the x- and y-axes are two walls. The point vortex

is at the site x0 = 1
4 , y0 = 1

4 . Figure 6 is the contours of the potential function φ and the
stream function ψ calculated by using the LBM at time t = 10 000
t in which the time step
is 
t = 
x/c = 1.667 × 10−3. The initial condition is a point vortex flow without the x- and
y-axes. Boundary conditions are ∂φ

∂x

∣∣
x=0 = 0, ∂2φ

∂x2

∣∣
x=1 = 0, ∂φ

∂y

∣∣
y=0 = 0, ∂2φ

∂y2

∣∣
y=1 = 0. In the

two boundaries x = 0 and y = 0, the normal component of velocity is zero; other boundaries
x = 1 and y = 1 are Von Neumann conditions. This numerical result also agrees well with
the classical result [15].
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(a) (b)

Figure 6. Contours of the numerical result by using the lattice Boltzmann model to FHP lattice.
(a) Potential function φ, (b) stream function ψ . z0 = 1

4 + i 1
4 . Parameters are c = 3.0, τ = 1.51,

lattice size = 100 × 100, time t = 10 000
t , R = 1. Contours number is 40.

5. Concluding remarks

In this paper, a new lattice Boltzmann model for the nonlinear Schrödinger equation is
proposed. The new model is based on the technique of the higher order moment of equilibrium
distribution functions and a series of lattice Boltzmann equations in different time scales. The
irrotational Euler equations are derived from this nonlinear Schrödinger equation by removing
non-physical pressure.

Our target is to simulate the nonlinear Schrödinger equation, say, to propose a new
numerical method. We find that this model can be used to simulate the irrotational flows.
These two sample numerical examples show that numerical results agree well with classical
ones.

Finally, we point out that this method and the main idea in the paper, including a series
of the lattice Boltzmann equations in different time scales, conversation laws in time scales
t0, t1, and its equilibrium distribution, can be spread into the corresponding three-dimensional
irrotational flows. Nevertheless, there are many problems to be solved to develop this model
as a tool of simulating the nonlinear Schrödinger equation or the Euler equations. We would
discuss these problems in forthcoming papers.

Appendix

Taking (14) + (15) × k + (16) × k2 and summation over α, we have

∂uσ

∂t
= k

(
τ − 1

2

)
∂2

∂xj ∂xk

(λKσβuβδjk) + Kσβuβ + Kσβbβ + E3 + O(k3), (A.1)

in which E3 is the third-order error term

E3 = −
∑

α

k2

[(
τ 2 − τ +

1

6

)

3Fσ,eq

α + 2

(
1

2
− τ

)



∂

∂t1
Fσ,eq

α + 
τθσ
α

]
. (A.2)
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In order to find E3, term
∑

α
∂F

σ,eq
α

∂t1
needs to be determined. According to equation (15),

∂

∂t1
Fσ,eq

α = −
(

1

2
− τ

)

2Fσ,eq

α − 1

τ
F σ,2

α + θσ
α . (A.3)

Taking summation over α, we obtain

∂uσ

∂t1
=

∑
α

[
−

(
1

2
− τ

)

2Fσ,eq

α − 1

τ
F σ,2

α + θσ
α

]

=
(

τ − 1

2

) ∑
α


2Fσ,eq
α +

1

k
(Kσβuβ + Kσβbβ)

=
(

τ − 1

2

) [∑
α

∂2F
σ,eq
α

∂t2
0

+ 2
∑

α

eαj

∂2F
σ,eq
α

∂xj ∂t0
+

∑
α

eαieαj

∂2F
σ,eq
α

∂xi∂xj

]
+

Kσβ

k
(uβ + bβ),

namely,

∂uσ

∂t1
=

(
τ − 1

2

)[
∂2

∂xj ∂xk

λKσβuβδjk

]
+

Kσβ

k
(uβ + bβ). (A.4)

Equation (A.4) is named as the conversation law in the second time scale t1. Combining
equations (8), (9), (18), we obtain

−
∑

α

k2

(
τ 2 − τ +

1

6

)

3Fσ,eq

α = 0, (A.5)

∑
α

[(
1

2
− τ

)



∂

∂t1
Fσ,eq

α

]
= 0, (A.6)

−
∑

α

k2τ
θσ
α = 0. (A.7)

Therefore,

E3 = −
∑

α

k2

[(
τ 2 − τ +

1

6

)

3Fσ,eq

α + 2

(
1

2
− τ

)



∂

∂t1
Fσ,eq

α + 
τθσ
α

]
= 0. (A.8)

Taking (14) + (15) × k + (16) × k2 + (17) × k
3

and summation over α, we have

∂uσ

∂t
= k

(
τ − 1

2

)
∂2

∂xj ∂xk

(λKσβuβδjk) + Kσβuβ + Kσβbβ + E3 + E4 + O(k4), (A.9)

in which E4 is the fourth-order error term

E4 = −k3
∑

α

[(
−τ 3 +

3

2
τ 2 − 7

12
τ +

1

24

)

4Fσ,eq

α + 3

(
τ 2 − τ +

1

6

)

2 ∂

∂t1
Fσ,eq

α

+

(
1

2
− τ

)
∂2

∂t2
1

Fσ,eq
α +

∂

∂t1
τθσ

α +

(
1

2
− τ

)

2τθσ

α

]
. (A.10)

In order to find E4, term
∑

α
∂2F

σ,eq
α

∂t2
1

needs to be determined. According to equation (A.3), we
have

∂F
σ,eq
α

∂t2
=

(
1

2
− τ

)2


4Fσ,eq
α +

1

τ

(
1

2
− τ

)

2Fσ,2

α −
(

1

2
− τ

)

2θσ

α − 1

τ

∂

∂t1
Fσ,2

α +
∂θσ

α

∂t1
.

(A.11)
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By putting ∂F
σ,eq
α

∂t1
and ∂2F

σ,eq
α

∂t2
1

into equation (A.10), E4 is written as

E4 = −k3
∑

α

[(
C4 − 3C2C3 + C3

2

)

4Fσ,eq

α − 3

τ
C3


2Fσ,2
α + 3C3


2θσ
α +

1

τ
C3

2

2Fσ,2

α

−C3
3
2θσ

α − 1

τ
C2

∂F σ,2
α

∂t1
+ C2

∂θσ
α

∂t1
+ τ

∂θσ
α

∂t1
+ C2τ
2θσ

α

]
. (A.12)

In equation (A.12), C2 = 1
2 − τ , C3 = τ 2 − τ + 1

6 , C4 = −τ 3 + 3
2τ 2 − 7

12τ + 1
24 .

According to
∑

α F σ,2
α = 0, E4 is written as follows:

E4 = −k3
∑

α

[(
C4 − 3C2C3 + C3

2

)

4Fσ,eq

α +
(
3C3 + τC2 − C3

3

)

2θσ

α + (C2 + τ)
∂θσ

α

∂t1

]
.

(A.13)

In equation (A.13), 
4F
σ,eq
α , 
2θσ

α and ∂θσ
α

∂t1
need to be found

∑
α


4Fσ,eq
α =

∑
α

(
∂

∂t0
+ eαj

∂

∂xj

)4

Fσ,eq
α = λKσβ

3c2

D + 2
∇4uβ, (A.14)

∑
α


2θσ,eq
α = bc2

(b + 1)kD
Kσβ(∇2uβ + ∇2bβ), (A.15)

∑
α

∂θσ
α

∂t1
= λ

k

(
KσβKβη + KσβKγξ

∂bβ

∂uγ

δηξ

) [
−C2∇2uη +

1

k
(uη + bη)

]
, (A.16)

in which ∇2 = ∂2

∂xj ∂xj
, ∇4 = ∂4

∂xj ∂xj ∂xj ∂xj
. Combining (A.14)-(A.16), we have

E4 = −k3
(
C4 − 3C2C3 + C3

2

)
λKσβ

3c2

D + 2
∇4uβ

− k3
(
3C3 + τC2 − C3

3

) bc2

(b + 1)kD
Kσβ(∇2uβ + ∇2bβ)

− k3(C2 + τ)
λ

k

(
KσβKβη + KσβKγξ

∂bβ

∂uγ

δηξ

)[
−C2∇2uη +

1

k
(uη + bη)

]
.

(A.17)
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